121 research outputs found

    Interval Timing and Time-Based Decision Making

    Get PDF
    International audienceThe importance of time perception and timed performance is revealed in everyday activities from the sleep–wake cycle to verbal communication, playing, and appreciating music, the exquisite temporal control of both voluntary and involuntary behavior, and choice. With regard to the last point, making decisions is heavily influenced by the duration of the various options, the duration of the expected delays for receiving the options, and the time constraints for making a choice. Recent advances suggest that the brain represents time in a distributed manner and reflects time as a result of temporal changes in network states and/or by the coincidence detection of the phase of different neural populations. Moreover, the oscillatory properties of neural circuits can be shown to influence the acquisition of conditioned responding and the timing of motor responses. This Research Topic on “Interval Timing and Time-Based Decision Making” emerged from a symposium sponsored by the European COST-Action on Time In MEntaL activity: theoretical, behavioral, bioimaging, and clinical perspectives (TIMELY) that was a satellite of the European Brain and Behaviour Society meeting held in Seville, Spain (September 9, 2011). The focus of that TIMELY symposium was on “Neurobiology of Time Perception: From Normality to Dysfunction” and was organized by Valérie Doyère, Argiro Vatakis, and Elzbieta Szelag

    Unwinding the Molecular Basis of Interval and Circadian Timing

    Get PDF
    Neural timing mechanisms range from the millisecond to diurnal, and possibly annual, frequencies. Two of the main processes under study are the interval timer (seconds-to-minute range) and the circadian clock. The molecular basis of these two mechanisms is the subject of intense research, as well as their possible relationship. This article summarizes data from studies investigating a possible interaction between interval and circadian timing and reviews the molecular basis of both mechanisms, including the discussion of the contribution from studies of genetically modified animal models. While there is currently no common neurochemical substrate for timing mechanisms in the brain, circadian modulation of interval timing suggests an interaction of different frequencies in cerebral temporal processes

    Oscillatory multiplexing of neural population codes for interval timing and working memory

    Get PDF
    Interval timing and working memory are critical components of cognition that are supported by neural oscillations in prefrontal-striatal-hippocampal circuits. In this review, the properties of interval timing and working memory are explored in terms of behavioral, anatomical, pharmacological, and neurophysiological findings. We then describe the various neurobiological theories that have been developed to explain these cognitive processes - largely independent of each other. Following this, a coupled excitatory - inhibitory oscillation (EIO) model of temporal processing is proposed to address the shared oscillatory properties of interval timing and working memory. Using this integrative approach, we describe a hybrid model explaining how interval timing and working memory can originate from the same oscillatory processes, but differ in terms of which dimension of the neural oscillation is utilized for the extraction of item, temporal order, and duration information. This extension of the striatal beat-frequency (SBF) model of interval timing (Matell and Meck, 2000, 2004) is based on prefrontal-striatal-hippocampal circuit dynamics and has direct relevance to the pathophysiological distortions observed in time perception and working memory in a variety of psychiatric and neurological conditions. (C) 2014 Elsevier Ltd. All rights reserved.</p

    Acquisition of “Start” and “Stop” response thresholds in peak-interval timing is differentially sensitive to protein synthesis inhibition in the dorsal and ventral striatum

    Get PDF
    Time-based decision-making in peak-interval timing procedures involves the setting of response thresholds for the initiation (“Start”) and termination (“Stop”) of a response sequence that is centered on a target duration. Using intracerebral infusions of the protein synthesis inhibitor anisomycin, we report that the acquisition of the “Start” response depends on normal functioning (including protein synthesis) in the dorsal striatum (DS), but not the ventral striatum (VS). Conversely, disruption of the VS, but not the DS, impairs the acquisition of the “Stop” response. We hypothesize that the dorsal and ventral regions of the striatum function as a competitive neural network that encodes the temporal boundaries marking the beginning and end of a timed response sequence

    Relativity Theory and Time Perception: Single or Multiple Clocks?

    Get PDF
    BACKGROUND:Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset) independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock. METHODOLOGY/PRINCIPAL FINDINGS:Rats were trained to time three durations (e.g., 10, 30, and 90 s). When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results. CONCLUSIONS/SIGNIFICANCE:These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context

    Developmental neuroscience of time and number: implications for autism and other neurodevelopmental disabilities

    Get PDF
    Estimations of time and number share many similarities in both non-humans and man. The primary focus of this review is on the development of time and number sense across infancy and childhood, and neuropsychological findings as they relate to time and number discrimination in infants and adults. Discussion of these findings is couched within a mode-control model of timing and counting which assumes time and number share a common magnitude representation system. A basic sense of time and number likely serves as the foundation for advanced numerical and temporal competence, and aspects of higher cognition—this will be discussed as it relates to typical childhood, and certain developmental disorders, including autism spectrum disorder. Directions for future research in the developmental neuroscience of time and number (NEUTIN) will also be highlighted

    Neuronal Chains for Actions in the Parietal Lobe: A Computational Model

    Get PDF
    The inferior part of the parietal lobe (IPL) is known to play a very important role in sensorimotor integration. Neurons in this region code goal-related motor acts performed with the mouth, with the hand and with the arm. It has been demonstrated that most IPL motor neurons coding a specific motor act (e.g., grasping) show markedly different activation patterns according to the final goal of the action sequence in which the act is embedded (grasping for eating or grasping for placing). Some of these neurons (parietal mirror neurons) show a similar selectivity also during the observation of the same action sequences when executed by others. Thus, it appears that the neuronal response occurring during the execution and the observation of a specific grasping act codes not only the executed motor act, but also the agent's final goal (intention)

    Developmental Periods of Choline Sensitivity Provide an Ontogenetic Mechanism for Regulating Memory Capacity and Age-Related Dementia

    Get PDF
    In order to determine brain and behavioral sensitivity of nutrients that may serve as inductive signals during early development, we altered choline availability to rats during 7 time frames spanning embryonic day (ED) 6 through postnatal day (PD) 75 and examined spatial memory ability in the perinatally-treated adults. Two sensitive periods were identified, ED 12–17 and PD 16–30, during which choline supplementation facilitated spatial memory and produced increases in dendritic spine density in CA1 and dentate gyrus (DG) regions of the hippocampus while also changing the dendritic fields of DG granule cells. Moreover, choline supplementation during ED 12–17 only, prevented the memory decline normally observed in aged rats. These behavioral changes were strongly correlated with the acetylcholine (ACh) content of hippocampal slices following stimulated release. Our data demonstrate that the availability of choline during critical periods of brain development influences cognitive performance in adulthood and old age, and emphasize the importance of perinatal nutrition for successful cognitive aging

    Contingent negative variation and its relation to time estimation: a theoretical evaluation

    Get PDF
    The relation between the contingent negative variation (CNV) and time estimation is evaluated in terms of temporal accumulation and preparation processes. The conclusion is that the CNV as measured from the electroencephalogram (EEG) recorded at fronto-central and parietal-central areas is not a direct reflection of the underlying interval timing mechanism(s), but more likely represents a time-based response preparation/decision-making process
    corecore